1.3亿次点击阅读 “双奥之城·看典”展示最美北京******
中新网北京2月21日电 (徐婧 杜燕)2月1日至20日,2022北京新闻中心“双奥之城·看典”展示活动以“一天一主题、一图一故事”的访谈形式,从百姓视角讲述人文北京、科技北京、绿色北京的生动故事。截至2月20日,“看典”活动累计直播点击和阅读量达到1.3亿次。
2022北京新闻中心举办的展示活动——“双奥之城·看典”访谈,策划了20场以北京历史文化名城保护、城市建设和社会发展、生态环境保护、社会保障和民生事业发展、冬奥情缘与冰雪运动等为主题的直播活动。
名城建设,共同守护
拥有3000余年建城史和800多年建都史的北京,是一座享誉世界的历史文化名城。这座城市不仅拥有七大世界文化遗产,还拥有伟大而壮美的城市中轴线,更有数不清的文物古迹和历史遗存,历史底蕴十分深厚。
北京独有的壮美秩序,由全长7.8公里的中轴线建立而产生。中轴线将北京城清晰地“规制”起来,前朝后市、左祖右社、坛台四环,承载的文化生生不息。在“行走在中轴线上”专场,中国文物学会会长、故宫博物院学术委员会主任单霁翔从个人的角度为观众讲解了中轴线的文化内涵,并借由中轴线向南北延伸、引领北京城市走向未来而引出“活态遗产”的概念;清华大学国家遗产中心主任吕舟为观众介绍了北京中轴线申遗的相关工作和中轴线符合哪些世界遗产技术性标准,并呼吁大家一起关心、参与到北京中轴线的保护和讲述当中,爱遗产、爱城市。
图为2022北京新闻中心2月1日至20日举办的展示活动“双奥之城·看典”。 中新社记者 刘文曦 摄城市“进化”,创新蝶变
人民大会堂、国家大剧院、北京大兴国际机场、国家速滑馆……一个个地标建筑,见证了北京在发展中不断优化城市格局,完善城市服务,建设国际一流的和谐宜居之都的轨迹。“新地标——北京城市的‘进化史’”专场上,这些地标的建筑师们介绍了建筑的诞生故事,讲述了他们眼中的城市“进化史”。
不断“进化”着的还有北京的轨道交通。地铁是城市融入现代化交通的显著标志,同时也是城市发展和科技水平的重要体现。
从2008到2022,一座城市、两段奥运缘。14年来,从奥运支线到冬奥支线,从8条线、200公里到27条线、近800公里。飞速发展的北京轨道交通不仅承载着亿万人的“奥运情”“北京梦”,也见证了“双奥之城”的蝶变。在“从北京的地下路过”主题上,北京市轨道交通相关负责人带领观众“复盘”了北京地铁的发展史,也分享了他们在北京的地铁站设计、地铁驾驶等工作中发生的有趣故事。
绿色生态,全民共享
近年来,北京的生态建设取得了显著成果,越来越多的湿地公园、优美河湖出现在市民身边,成为备受市民喜爱的休闲观光区。
2月2日是“世界湿地日”,当天的活动以“乘风破浪的‘治水人’”主题,邀请了延庆区自然保护地管理处副主任刘雪梅,延庆区自然保护地管理处科普宣教科科长李昀倩等嘉宾参与直播,与直播间的市民畅聊他们各自在保护湿地、评选优美河湖和担任“河长”的工作中发生的故事。
北京日报报业集团记者叶晓彦介绍,随着优美河湖评定工作的开展,这一评定正在从专业化向大众化过渡,也正有越来越多的市民群众能够参与河湖治理和保护的工作中来。共治、共管、共享,北京美好的生态环境是大家共同参与维护的结果。
冰雪之上,圣火“飞扬”
在“双奥之城·看典”的直播间里,有冬奥会和冬残奥会的火炬火种灯的设计者,也有服务冬奥保障的工作者,还有努力推动冰雪进校园、推进实现“三亿人上冰雪”目标的民间奥运文化的推动者。他们在“双奥之城·看典”中讲述了自己与冬奥、与冰雪的缘分,与观众分享了奥运精神与冰雪运动赋予自己的激情与快乐。
2月4日是2022北京冬奥会的开幕日,奥运圣火在鸟巢点燃。当天的直播以“圣火飞扬”为主题,邀请了冬奥会和冬残奥会的火炬火种灯的设计者李剑叶,奥运特许商品销售相关负责人饶杰以及奥运藏品收藏者张文全等嘉宾参与活动,分享他们各自与奥运的缘分。
冬奥会火炬“飞扬”的设计者李剑叶讲述了在从设计到成品中自己团队经历的众多幕后故事,象征着生命力的火炬外形、体现传统文化的榫卯结构、凸显绿色理念的环保氢燃料等,回顾先进科技与中华文化在火炬上完美融合的历程。
“最密”站网,精准监测
天气是冬奥会成功举办的重要因素之一。2月9日,以“太阳照常升起”为主题的直播活动,邀请延庆区气象服务组副组长张曼,北京市气象台首席预报员、冬奥开闭幕式预报服务保障团队队长翟亮等嘉宾参与,为观众介绍了2022北京冬奥精准气象服务使用的创新科技,以及冬奥气象保障里有关监测、科研和预报的“奥秘”。
据介绍,北京在“十里不同天”的海陀山建设了17套自动气象站、4套便携自动气象站的地面监测系统,还在赛区建设了S波段天气雷达、激光测风雷达的垂直监测系统,完成了延庆赛区周边38套自动气象站的升级改造工作,组建的“三维、秒级、多要素”的气象综合监测系统,是目前冬奥会历届赛事中最为稠密的监测站网。
截至2月20日,“双奥之城·看典”活动累计直播访问量达8105.7万次,累计网络点击率达突破5000万次,直播点击和阅读量达到1.3亿次。未来,北京将用更具时代气息和人文关怀的美好与繁荣,向世界展示“双奥之城”的独特风采。(完)
诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?****** 相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。 你或身边人正在用的某些药物,很有可能就来自他们的贡献。 2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。 一、夏普莱斯:两次获得诺贝尔化学奖 2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。 今年,他第二次获奖的「点击化学」,同样与药物合成有关。 1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。 过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。 虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。 虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。 有机催化是一个复杂的过程,涉及到诸多的步骤。 任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。 不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。 为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。 点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。 点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。 夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。 大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。 大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。 大自然的一些催化过程,人类几乎是不可能完成的。 一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。 夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢? 大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。 在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。 其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。 诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]: 夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。 他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。 「点击化学」的工作,建立在严格的实验标准上: 反应必须是模块化,应用范围广泛 具有非常高的产量 仅生成无害的副产品 反应有很强的立体选择性 反应条件简单(理想情况下,应该对氧气和水不敏感) 原料和试剂易于获得 不使用溶剂或在良性溶剂中进行(最好是水),且容易移除 可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定 反应需高热力学驱动力(>84kJ/mol) 符合原子经济 夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。 他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。 二、梅尔达尔:筛选可用药物 夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。 他就是莫滕·梅尔达尔。 梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。 为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。 他日积月累地不断筛选,意图筛选出可用的药物。 在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。 三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。 2002年,梅尔达尔发表了相关论文。 夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。 三、贝尔托齐西:把点击化学运用在人体内 不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。 虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。 诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。 她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。 这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。 卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。 20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。 然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。 当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。 后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。 由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。 经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。 巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。 虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。 就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。 她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。 大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。 2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。 贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。 在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。 目前该药物正在晚期癌症病人身上进行临床试验。 不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。 「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江) 参考 https://www.nobelprize.org/prizes/chemistry/2001/press-release/ Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116. Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387. Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021. https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613. (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |